## Glycerol (data page)

This page provides supplementary chemical data on glycerol.

### Material Safety Data Sheet

The handling of this chemical may incur notable safety precautions. It is highly recommend that you seek the Material Safety Datasheet (MSDS) for this chemical from a reliable source such as SIRI, and follow its directions.

### Structure and properties

### Thermodynamic properties

Phase behavior | |
---|---|

Triple point | 291.8 K (18.7 °C), ? Pa |

Critical point | 850 K (577 °C), 7500 kPa |

Std enthalpy change of fusion, Δ _{fus}H | 18.28 kJ/mol |

Std entropy change of fusion, Δ _{fus}S | 62.7 J/(mol·K) |

Std enthalpy change of vaporization, Δ _{vap}H | 91.7 kJ/mol |

Std entropy change of vaporization, Δ _{vap}S | 201 J/(mol·K) |

Solid properties | |

Std enthalpy change of formation, Δ _{f}H_{solid} | ? kJ/mol |

Standard molar entropy,S_{solid} | ? J/(mol K) |

Heat capacity, c_{p} | 150. J/(mol K) 6°C - 11°C |

Liquid properties | |

Std enthalpy change of formation, Δ _{f}H_{liquid} | –669.6 kJ/mol |

Standard molar entropy,S_{liquid} | ? J/(mol K) |

Enthalpy of combustion, Δ_{c}H | –1654.3 kJ/mol |

Heat capacity, c_{p} | 221.9 J/(mol K) at 25°C |

Gas properties | |

Std enthalpy change of formation, Δ _{f}H_{gas} | –577.9 kJ/mol |

Standard molar entropy,S_{gas} | ? J/(mol K) |

Heat capacity, c_{p} | ? J/(mol K) |

### Vapor pressure of liquid

P in mm Hg | 1 | 10 | 40 | 100 | 400 | 760 | |

T in °C | 125.5 | 167.2 | 198.0 | 220.1 | 263.0 | 290.0 |

Table data obtained from *CRC Handbook of Chemistry and Physics*, 44th ed.

### Freezing point of aqueous solutions

% glycerol by volume | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
---|---|---|---|---|---|---|---|---|---|---|---|

Freezing point °C | –1.6 | –4.8 | –9.5 | –15.5 | –22.0 | –33.6 | –37.8 | –19.2 | –1.6 | 17.0 | |

Specific gravity d ^{15°} | 1.02415 | 1.40935 | 1.07560 | 1.10255 | 1.12985 | 1.15770 | 1.18540 | 1.21290 | 1.23950 | 1.26557 |

Table data obtained from *Lange's Handbook of Chemistry*, 10th ed. Specific gravity is at 15°C, referenced to water at 15°C.

See details on: Freezing Points of Glycerine-Water Solutions Dow Chemical ^{[3]}

### Distillation data

Vapor-liquid Equilibrium of Glycerol/water^{[4]}P = 760 mmHg | ||

BP Temp. °C | % by mole water | |
---|---|---|

liquid | vapor | |

278.8 | 2.75 | 93.15 |

247.0 | 4.67 | 94.73 |

224.0 | 6.90 | 95.63 |

219.2 | 7.67 | 97.43 |

210.0 | 9.01 | 97.83 |

202.5 | 10.31 | 97.24 |

196.5 | 11.59 | 98.39 |

175.2 | 17.56 | 98.99 |

149.3 | 30.04 | 99.64 |

137.2 | 38.47 | 99.76 |

136.8 | 38.95 | 98.78 |

131.8 | 43.58 | 99.76 |

121.5 | 56.33 | 99.84 |

112.8 | 70.68 | 99.93 |

111.3 | 73.86 | 99.94 |

106.3 | 84.42 | 99.96 |

### Spectral data

UV-Vis | |
---|---|

λ_{max} | ? nm |

Extinction coefficient, ε | ? |

IR | |

Major absorption bands | ? cm^{−1} |

NMR | |

Proton NMR | |

Carbon-13 NMR | |

Other NMR data | |

MS | |

Masses of main fragments |

### References

**^***Lange's Handbook of Chemistry*, 10th ed. pp 1669-1674**^**Pure Component Properties (Queriable database). Chemical Engineering Research Information Center. Retrieved on 13 May 2007.**^**Freezing Points of Glycerine-Water Solutions Dow Chemical**^**Binary Vapor-Liquid Equilibrium Data (Queriable database). Chemical Engineering Research Information Center.

Except where noted otherwise, data relate to standard ambient temperature and pressure.

Disclaimer applies.

Category: Chemical data pages

### Relationship between refractive index and specific gravity of aqueous glycerol solutions

D. Basker, *Analyst*, 1978, **103**, 185 **DOI: ** 10.1039/AN9780300185

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are **an author contributing to an RSC publication, you do not need to request permission** provided correct acknowledgement is given.

If you are **the author of this article, you do not need to request permission to reproduce figures and diagrams** provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

## Glycerol (data page)

This page provides supplementary chemical data on glycerol.

### Material Safety Data Sheet[edit]

The handling of this chemical may incur notable safety precautions. It is highly recommended that you seek the Material Safety Datasheet (MSDS) for this chemical from a reliable source and follow its directions.

### Structure and properties[edit]

### Thermodynamic properties[edit]

Phase behavior | |
---|---|

Triple point | 291.8 K (18.7 °C), ~99500 Pa |

Critical point | 850 K (577 °C), 7500 kPa |

Std enthalpy change of fusion, Δ _{fus}H | 18.28 kJ/mol |

Std entropy change of fusion, Δ _{fus}S | 62.7 J/(mol·K) |

Std enthalpy change of vaporization, Δ _{vap}H | 91.7 kJ/mol |

Std entropy change of vaporization, Δ _{vap}S | 201 J/(mol·K) |

Solid properties | |

Std enthalpy change of formation, Δ _{f}H_{solid} | ? kJ/mol |

Standard molar entropy,S_{solid} | 37.87 J/(mol K)^{[3]} |

Heat capacity, c_{p} | 150. J/(mol K) 6°C - 11°C |

Liquid properties | |

Std enthalpy change of formation, Δ _{f}H_{liquid} | –669.6 kJ/mol |

Standard molar entropy,S_{liquid} | 206.3 J/(mol K)^{[4]} |

Enthalpy of combustion, Δ_{c}H | –1654.3 kJ/mol |

Heat capacity, c_{p} | 221.9 J/(mol K) at 25°C |

Gas properties | |

Std enthalpy change of formation, Δ _{f}H_{gas} | –577.9 kJ/mol |

Standard molar entropy,S_{gas} | ? J/(mol K) |

Heat capacity, c_{p} | ? J/(mol K) |

### Vapor pressure of liquid[edit]

P in mm Hg | 1 | 10 | 40 | 100 | 400 | 760 | |

T in °C | 125.5 | 167.2 | 198.0 | 220.1 | 263.0 | 290.0 |

Table data obtained from *CRC Handbook of Chemistry and Physics*, 44th ed.

**log _{10} of Glycerol vapor pressure.** Uses formula: obtained from CHERIC

^{[5]}

### Freezing point of aqueous solutions[edit]

% glycerol by weight | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
---|---|---|---|---|---|---|---|---|---|---|---|

Freezing point °C | –1.6 | –4.8 | –9.5 | –15.5 | –22.0 | –33.6 | –37.8 | –19.2 | –1.6 | 17.0 | |

Specific gravity d ^{15°} | 1.02415 | 1.04935 | 1.07560 | 1.10255 | 1.12985 | 1.15770 | 1.18540 | 1.21290 | 1.23950 | 1.26557 |

Table data obtained from *Lange's Handbook of Chemistry*, 10th ed. Specific gravity is at 15°C, referenced to water at 15°C.

See details on: Freezing Points of Glycerine-Water Solutions Dow Chemical ^{[6]} or Freezing Points of Glycerol and Its Aqueous Solutions.^{[7]}

### Distillation data[edit]

Vapor-liquid Equilibrium of Glycerol/water^{[8]}P = 760 mmHg | ||

BP Temp. °C | % by mole water | |
---|---|---|

liquid | vapor | |

278.8 | 2.75 | 93.15 |

247.0 | 4.67 | 94.73 |

224.0 | 6.90 | 95.63 |

219.2 | 7.67 | 97.43 |

210.0 | 9.01 | 97.83 |

202.5 | 10.31 | 97.24 |

196.5 | 11.59 | 98.39 |

175.2 | 17.56 | 98.99 |

149.3 | 30.04 | 99.64 |

137.2 | 38.47 | 99.76 |

136.8 | 38.95 | 98.78 |

131.8 | 43.58 | 99.76 |

121.5 | 56.33 | 99.84 |

112.8 | 70.68 | 99.93 |

111.3 | 73.86 | 99.94 |

106.3 | 84.42 | 99.96 |

### Spectral data[edit]

### References[edit]

Except where noted otherwise, data relate to standard ambient temperature and pressure.

Disclaimer applies.

## Density model for aqueous glycerol solutions

### Abstract

Glycerol is used in many applications of science and daily life as it is cheap and biologically non-invasive. In science, aqueous solutions of glycerol are commonly used for experimental investigations as their density can be adapted by changing the glycerol content in the solution. Although the density of aqueous glycerol solutions has been measured precisely since more than a century, current models show a deviation from measured data of up to \(2\%\). In this work we present an analytical expression to accurately calculate the density of aqueous glycerol solutions. The presented empirical model is validated in the range between 15 and \(30\,^\circ {\text {C}}\) and has a maximum deviation of less than \(0.07\%\) with respect to measured data. This improves the accuracy of current models by more than one order of magnitude. By knowing the temperature and glycerol content of the solution, its density can be simply calculated with the presented model. A Matlab function is provided in the supplementary material to allow a simple implementation in other scientific work.

### Introduction

Glycerol is used in many applications within the scientific fields of fluid mechanics, chemistry, medicine, and biology. In daily life glycerol is commonly used in pharmaceutical and personal care products, as well as an anti-freeze and in food industry, because it is cheap and non-toxic (Ayoub and Abdullah 2012). In scientific work the exact determination of the density of aqueous glycerol solutions is important. By mixing glycerol with water, the density of the solution at room temperature can be adapted in the range from 1000 kg/m\(^{3}\) (pure water) to 1260 kg/m\(^{3}\) (pure glycerol). This possibility of adapting the liquid density is why glycerol is used in many scientific fields in particular in fluid mechanics and biotechnology. A specific example for the application of this technique in fluid mechanics is the matching of the liquid density to polymer particles, which allows them to follow the streamlines. This property can be used in measurement technologies to determine the structure of a flow field (Adrian and Westerweel 2011; Raffel et al. 2018). In biotechnology, glycerol density gradients allow to separate biological material by centrifugation (Hansen et al. 1987). Due to the various applications mentioned above, densities of aqueous glycerol solutions have been measured since more than a century. Whereas first measurements by Gerlach (1884) and Strohmer and Gerlach (1885) were accurate to four significant digits, several detailed investigations on the properties of aqueous glycerol solutions have been published later in the early 20th century by Washburn and West (1926) and Timmermans (1935), as well as by Bosart and Snoddy (1927) and Bosart and Snoddy (1928) and determined the density of glycerol and its aqueous solution with a precision up to five significant digits. A summary of tables on glycerol measurements can be found in a publication by the Glycerine Producers’ Association (1963). On the other hand, a precise formula to calculate the density based on temperature and glycerol content has not yet been presented. An attempt to summarize these measurements in a formula has been presented by Cheng (2008). However, in that work, the density of the solution is wrongly calculated using the mass fractions of the solutes instead of the volume fractions. Moreover the effect of volume contraction is not taken into account. In the work presented here, these aspects are corrected to develop a model for the the density of aqueous glycerol solutions that precisely fits with the measured data of Bosart and Snoddy (1928).

### Density relation for aqueous glycerol solutions

Assuming an ideal solution, its density \(\rho _{\text {s}}\) is given by

$$\begin{aligned} \rho _{\text {s}}(T,\phi _i)=\sum _{i=1}^N\rho _i(T)\,\phi _i, \end{aligned}$$

(1)

where *N* is the number of components, *T* the temperature value in \(^\circ {\text {C}}\), \(\phi _i\) the volume fraction of the *i*th component, and \(\rho _i(T)\) its temperature-dependent density. However, Eq. (1) does not take into account the volume contraction, an effect that is typically small but occurs for most liquid mixtures and leads to a solution volume \(V_{{\text {s}}}\) that is smaller than the sum of the component volumes \(\sum _{i} V_{i}\) (Prigogine et al. 1957). To set up a model with high accuracy, this effect is also taken into account in this work. Thus, the volume contraction coefficient \(\kappa\) is introduced as the ratio:

$$\begin{aligned} \kappa =\frac{1}{V_{{\text {s}}}}\sum _{i} V_{i}. \end{aligned}$$

(2)

By analyzing measured data of aqueous glycerol solutions, it can be found that \(\kappa\) not only depends on the volume fraction of glycerol, but also on the temperature of the solution (Bosart and Snoddy 1928). With the volume contraction the density of an aqueous glycerol solution is given by

$$\begin{aligned} \rho _{\text {s}}(T,\phi _{\text {g}})=\kappa (T,\phi _{\text {g}})\,\left[ \rho _{\text {g}}(T)\phi _{\text {g}}+\rho _{\text {0}}(T)(1-\phi _{\text {g}})\right] , \end{aligned}$$

(3)

where \(\phi _{\text {0}}\) and \(\phi _{\text {g}}\) are the volume fractions of water and glycerol and \(\rho _{\text {0}}(T)\) and \(\rho _{\text {g}}(T)\) the densities, respectively. As the mass fraction \(w_i\) is more commonly used than the volume fraction \(\phi _i\) to describe the amount of the components in a solution, the conversion:

$$\begin{aligned} \phi _{\text {g}}=\left[ 1+\frac{\rho _{\text {g}}(T)}{\rho _{\text {0}}(T)}\left( \frac{1}{w_{\text {g}}}-1\right) \right] ^{-1} \end{aligned}$$

(4)

is used in the following. The resulting expression for the density of an aqueous glycerol solution is then

$$\begin{aligned} \rho _{\text {s}}(T,w_{\text {g}})=\kappa (T, w_{\text {g}})\,\left[ \rho _{\text {0}}(T)+\frac{\rho _{\text {g}}(T)-\rho _{\text {0}}(T)}{1+\frac{\rho _{\text {g}}(T)}{\rho _{\text {0}}(T)}\left( \frac{1}{w_{\text {g}}}-1\right) }\right] . \end{aligned}$$

(5)

### Model for the density of aqueous glycerol solutions

The model presented in this work is based on experimental data which is shown in Table 1 of the supplementary material where the density of aqueous glycerol solutions \(\rho _{\text {s}}\) was measured by Bosart and Snoddy in a temperature range between 15 and 30 \(^{\circ }\)C for glycerol weight fractions between 0 and 100% with an uncertainty \(\Delta \rho _{\text {s}}\approx \,0.1\,{\text {kg}}/{\text {m}}^{3}\) (Bosart and Snoddy 1928). Based on this data, a model will be developed in this work to describe the density of aqueous glycerol solutions. The model uses the density of pure water \(\rho _{\text {0}}\) (Linstrom and Mallard 2005; Wagner and Pruß 2002) and pure glycerol \(\rho _{\text {g}}\) (Bosart and Snoddy 1928) to calculate \(\rho _{\text {s}}\). The uncertainties of the measured densities of the pure components are \(\Delta \rho _{\text {0}}\approx \,0.01\,{\text {kg}}/{\text {m}}^{3}\) and \(\Delta \rho _{\text {g}}\approx \,0.1\,{\text {kg}}/{\text {m}}^{3}\). With Eq. (2) and the given uncertainties, the uncertainty of the volume contraction coefficient is \(\Delta \kappa \approx 0.0002\) according to linear error calculation.

The densities of the pure liquids can be approximated with the empirical expressions:

$$\rho _{\text {0}}(T) = 1000\left( {1 - \left| {\frac{{T - 3.98}}{{615}}} \right|^{{1.71}} } \right) \frac{{{\text{kg}}}}{{{\text{m}}^{{\text{3}}} }}$$

(6)

for water and

$$\rho _{\text {g}}(T) =\left(1273-0.612\,T\right) \,\frac{\text{kg}}{{\text{m}^{3}}}$$

(7)

for glycerol (adapted from Cheng (2008) to fit the data of Linstrom and Mallard (2005) and Bosart and Snoddy (1928), respectively). Equation 6 describes the temperature dependent density of water where the maximum deviation from the measured data is less than 0.3 kg/m\(^{3}\) (0.03%) in the temperature range between 0 and \(100\,^\circ {\text {C}}\). For glycerol, the temperature dependent density is given by Eq. (7) and the maximum deviation from the measured data is less than 0.4 kg/m\(^{3}\) (0.03%) in the temperature range between 15 and \(30\,^\circ {\text {C}}\). For pure liquids \(\kappa\) has to be exactly one. To guarantee this it can be approximated by the function

$$\begin{aligned} \kappa (T, w_{\text {g}})=1+A\,\sin (w_{\text {g}}^{1.31}\pi )^{0.81}, \end{aligned}$$

(8)

where *A* is the temperature dependent coefficient

$$\begin{aligned} A=1.78\times 10^{-6}\,T^2-1.82\times 10^{-4}\,T+1.41\times 10^{-2}. \end{aligned}$$

(9)

Equations (8) and (9) where determined based on the measurements of Bosart and Snoddy (1928). Figure 1 shows a comparison between \(\kappa\) calculated by the model given in Eq. (8) and the same coefficient determined based on the measured data as a function of glycerol content and temperature. The maximum deviation of \(\kappa\) from the measured data is 0.0004 which is only by a factor of 2 higher than the calcuated uncertainty based on the measurements.

The density of aqueous glycerol solutions is calculated by substituting Eqs. (6)–(8) into Eq. (5). When comparing the results with the measurements which are given in Bosart and Snoddy (1928) in the temperature range between 15 and \(30\,^\circ {\text {C}}\), the maximum deviation between model and measured data is less than 0.7 kg/m\(^{3}\) (0.07%). In comparison, the commonly used model of Cheng (2008), which does not take into account volume contraction shows a maximum deviation from measured data of about \(2\%\). A more recent but less known work by Cristancho et al. (2011) is using the Jouyban–Acree model (Jouyban et al. 2004) to estimate the density of aqueous glycerol solutions and achieved results with a maximum deviation from measured data of about \(0.4\%\). The model presented in this work is, therefore, strongly improving other density models of aqueous glycerol solutions and is much closer to the measurement uncertainty of \(0.01\%\).

Figure 2 shows a comparison of the model presented in this work with the models of Cheng (2008) and Cristancho et al. (2011), respectively. The measured data of Bosart and Snoddy (1928) is also shown in the figure. To enable an easy implementation of the above results in other scientific work, a matlab function with the model is provided in the supplementary material. An online calculator for the density and viscosity of aqueous glycerol solutions is provided by Chris Westbrook (http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html). The tables in the supplementary material show a comparison between the measured data (Supplementary Table 1) and the model (Supplementary Table 2) as well as calculated densities of aqueous glycerol solutions at typical lab temperatures between 15 and \(29\,^\circ {\text {C}}\) (Supplementary Tables 3, 4, 5).

### References

Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

MATH Google Scholar

Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sust Energ Rev 16:2671–2686

Article Google Scholar

Bosart L, Snoddy A (1927) New glycerol tables. Ind Eng Chem 19:506–510

Article Google Scholar

Bosart L, Snoddy A (1928) Specific gravity of glycerol. Ind Eng Chem 20:1377–1379

Article Google Scholar

Cheng NS (2008) Formula for the viscosity of a glycerol–water mixture. Ind Eng Chem Res 47:3285–3288

Article Google Scholar

Cristancho DM, Delgado DR, Martínez F, Abolghassemi Fakhree MA, Jouyban A (2011) Volumetric properties of glycerol+ water mixtures at several temperatures and correlation with the Jouyban–Acree model. Rev Colomb Cienc Quim Farm 40:92–115

Google Scholar

Gerlach GT (1884) Ueber Glycerin, specifische Gewichte und Siedepunkte seiner wässrigen Lösungen sowie über einen Vaporimeter zur Bestimmung der Spannkräfte von Glycerinlösungen (German) [On glycerol, specific gravity and boiling points of its aqueous solutions as well as on a vaporimeter for the determination of the tension forces of glycerol solutions]. Chem Ind 7:277–287

Google Scholar

Glycerine Producers’ Association (1963) Physical properties of glycerine and its solutions. Glycerine Producers’ Association, New York

Google Scholar

Hansen J, Schulze T, Moelling K (1987) RNase H activity associated with bacterially expressed reverse transcriptase of human T-cell lymphotropic virus III/lymphadenopathy-associated virus. J Biol Chem 262:12393–12396

Jouyban A, Fathi Azarbayjani A, Barzegar-Jalali M, Acree J (2004) Correlation of surface tension of mixed solvents with solvent composition. Pharmazie 59:937–941

Google Scholar

Linstrom P, Mallard W (2005) Thermophysical properties of fluid systems. NIST standard reference database 69

Prigogine I, Bellemans A, Mathot V (1957) The molecular theory of solutions. North-Holland, Amsterdam

MATH Google Scholar

Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry. Springer, Heidelberg

Book Google Scholar

Strohmer F, Gerlach GT (1885) Ueber die Gehaltsbestimmung wässriger Glycerinlösungen (German) [On the content dedetermination of aqueous glycerine solutions]. Fresen J Anal Chem 24:106–112

Article Google Scholar

Timmermans J (1935) Travaux du bureau international d’étalons physico-chimique - VII - Étude des constantes physiques de vingt composés organiques (French) [Work of the international bureau of physical and chemical standards - VII - study of the physical constants of twenty organic compounds]. J Chim Phys 32:501–526

Article Google Scholar

Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

Article Google Scholar

Washburn EW, West CJ (1926) International critical tables of numerical data, physics, chemistry and technology, vol 3

Download references

### Acknowledgements

Abundant discussions and help from Chris Westbrook, University of Reading, UK especially in the approximation of the volume contraction Eq. (8) is greatly acknowledged. The authors acknowledge financial support by the German Research Foundation (DFG) Grant KA 1808/17-1.

### Author information

### Affiliations

Institut für Strömungsmechanik und Aerodynamik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany

Andreas Volk & Christian J. Kähler

### Corresponding author

Correspondence to Andreas Volk.

### Electronic supplementary material

### Rights and permissions

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

### About this article

### Cite this article

Volk, A., Kähler, C.J. Density model for aqueous glycerol solutions. *Exp Fluids***59, **75 (2018). https://doi.org/10.1007/s00348-018-2527-y

Download citation

### Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

## Specific gravity glycerol

See what stories I was 25, my girlfriend was 20. In her 20s, she had already gone through so many men that some of them do not see so much. I knew that, but to be honest, I was not thinking with my head. Yana fucked very cool and she really liked it. She lived in the apartment of her cousin and his family - his wife and two girls, 7 and 18 years.

Determination of Specific Gravity of Liquid (Relative density) with Calculation \u0026 Explanation. HINDIYeah. The smell of sex hits all receptors. I notice desire even on the street. But you are gentle, affectionate and in control of yourself, you know that the first step should be mine. Your home dress, yes, the slippers are in place, I left everything as.

### You will also be interested:

- Little bong
- Youtube cockroaches
- Dacc employment
- Plastic meyer vise
- Ultimate goku form
- Ecg f wave
- Aprilia dealer california
- Rare mini bikes
- Bain ultra vibe
- Carrier statement envelope
- P0113 mazda 3

Asleep. Pulling the special filters out of his nose, the fat man looked approvingly at the melted candle stubs. Special toys that spread sleepy smoke mixed with aphrodosiac worked great. Taking out a vial from his pocket, Puz opened his mouth a little to the girl and poured in an additional. Soporific and a causative agent, unable to resist the temptation to crush her tongue.

**12587**12588 12589